Phonological Feature Based Mispronunciation Detection and Diagnosis Using Multi-Task DNNs and Active Learning

نویسندگان

  • Vipul Arora
  • Aditi Lahiri
  • Henning Reetz
چکیده

This paper presents a phonological feature based computer aided pronunciation training system for the learners of a new language (L2). Phonological features allow analysing the learners’ mispronunciations systematically and rendering the feedback more effectively. The proposed acoustic model consists of a multi-task deep neural network, which uses a shared representation for estimating the phonological features and HMM state probabilities. Moreover, an active learning based scheme is proposed to efficiently deal with the cost of annotation, which is done by expert teachers, by selecting the most informative samples for annotation. Experimental evaluations are carried out for German and Italian native-speakers speaking English. For mispronunciation detection, the proposed feature-based system outperforms conventional GOP measure and classifier based methods, while providing more detailed diagnosis. Evaluations also demonstrate the advantage of active learning based sampling over random sampling.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feature-based Malicious URL and Attack Type Detection Using Multi-class Classification

Nowadays, malicious URLs are the common threat to the businesses, social networks, net-banking etc. Existing approaches have focused on binary detection i.e. either the URL is malicious or benign. Very few literature is found which focused on the detection of malicious URLs and their attack types. Hence, it becomes necessary to know the attack type and adopt an effective countermeasure. This pa...

متن کامل

Automatic lexical stress and pitch accent detection for L2 English speech using multi-distribution deep neural networks

This paper investigates the use of multi-distribution deep neural networks (MD-DNNs) for automatic lexical stress detection and pitch accent detection, which are useful for suprasegmental mispronunciation detection and diagnosis in second-language (L2) English speech. The features used in this paper cover syllable-based prosodic features (including maximum syllable loudness, syllable nucleus du...

متن کامل

Integrating acoustic and state-transition models for free phone recognition in L2 English speech using multi-distribution deep neural networks

This paper investigates the use of Multi-Distribution Deep Neural Networks (MD-DNNs) for integrating acoustic and statetransition models in free phone recognition of L2 English speech. In Computer-Aided Pronunciation Training (CAPT) system, free phone recognition for L2 English speech is the key model of Mispronunciation Detection and Diagnosis (MDD) in the cases of allowing freely speaking. A ...

متن کامل

Automatic derivation of phonological rules for mispronunciation detection in a computer-assisted pronunciation training system

Computer-Assisted Pronunciation Training System (CAPT) has become an important learning aid in second language (L2) learning. Our approach to CAPT is based on the use of phonological rules to capture language transfer effects that may cause mispronunciations. This paper presents an approach for automatic derivation of phonological rules from L2 speech. The rules are used to generate an extended...

متن کامل

Evaluation Metric-related Optimization Methods for Mandarin Mispronunciation Detection

Mispronunciation detection and diagnosis are part and parcel of a computer assisted pronunciation training (CAPT) system, collectively facilitating second-language (L2) learners to pinpoint erroneous pronunciations in a given utterance so as to improve their spoken proficiency. This thesis presents a continuation of such a general line of research and the major contributions are three-fold. Fir...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017